

# Einstein's lost manuscript

*A tribute to Brendan McCann*

Cormac O'Raifeartaigh FRAS

SETU Maths-Physics Seminar Series 2025

# Einstein's lost manuscript

## ‡ An unpublished work

*Written in early 1931*

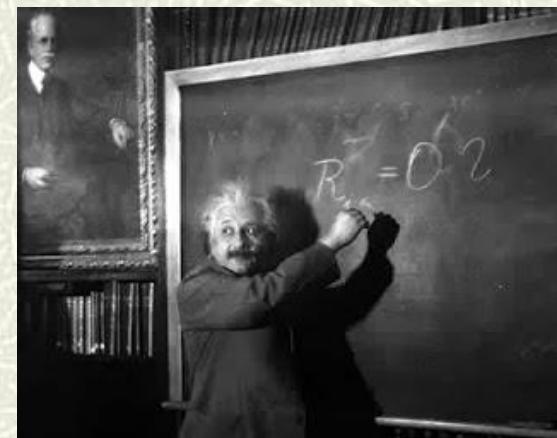
## ‡ A 'steady-state' model of the universe

*Expanding universe of constant density*

*Anticipates controversial theory (Hoyle)*

## ‡ Fatal flaw

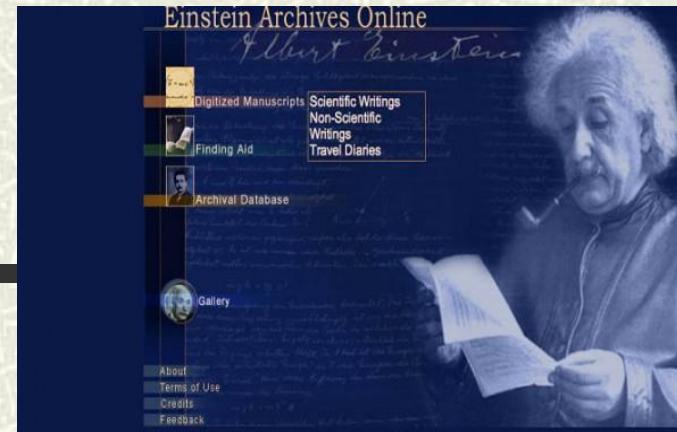
*Quickly abandoned*


## ‡ Embraced evolving models

*Friedman-Einstein model (1931)*

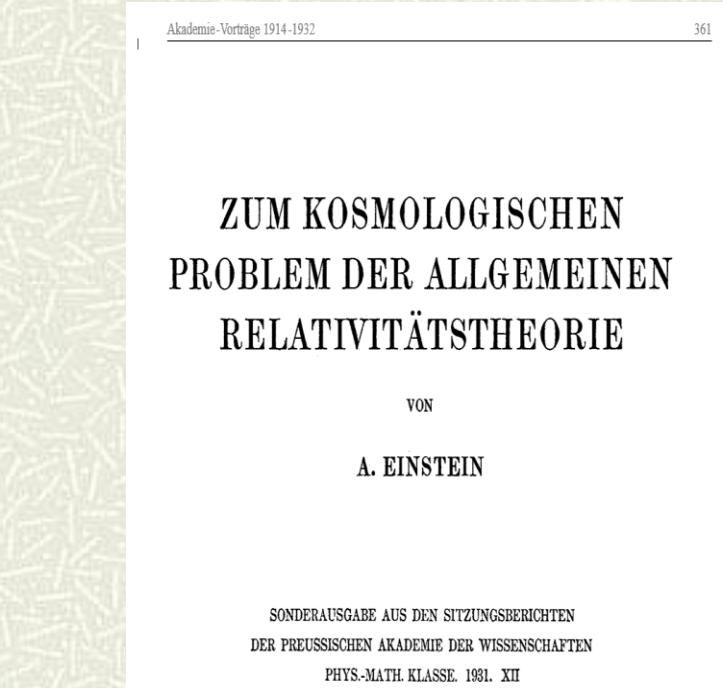
*Einstein-de Sitter model (1932)*




*Einstein in California (1931)*



# How was it found?


## # Albert Einstein Archive

*Online archive of handwritten manuscripts*



## # Manuscript misfiled

*Misfiled as Einstein's 1931 model of the cosmos  
Hidden in plain sight*



## # COR and BMC

*Study and translation of Einstein's 1931 model  
Some anomalies in calculations  
BMC: Work from original manuscript?*

## # A lucky discovery!

*Archive MS something quite different – ss model*

**nature** International weekly journal of science

Home | News & Comment | Research | Careers & Jobs | Current Issue | Archive | Audio & Video | For Authors

Archive > Volume 506 > Issue 7489 > News > Article

NATURE | NEWS



Top

## Einstein's lost theory uncovered

Physicist explored the idea of a steady-state Universe in 1931.

Davide Castelvecchi

24 February 2014

## New Discovery Reveals Einstein Tried To Devise A Steady State Model Of The Universe



+ Comment Now + Follow Comments

Almost 20 years before the late Fred Hoyle and his colleagues devised the [Steady State Theory](#), Albert Einstein toyed with a similar idea: that the universe was eternal, expanding outward with a consistent input of spontaneously generating matter.

An Irish physicist came across the paper last year and could hardly believe it. According to this week's article in [Nature](#),

model of the universe very different to today's [Big Bang Theory](#).



Rabobank The straight talking savings bank



The manuscript, which hadn't been referred to by scientists for decades,

# SCIENTIFIC AMERICAN™

[Sign In](#) | [Register](#) 

Search ScientificAmerican.com



Subscribe

News & Features

Topics

Blogs

Videos & Podcasts

Education

Cit

Physics » Nature

84 Email Print

## Einstein's Lost Theory Uncovered

The famous physicist explored the idea of a steady-state universe in 1931

**nature**

Feb 25, 2014 | By Davide Castelvecchi and Nature magazine

A manuscript that lay unnoticed by scientists for decades has revealed that Albert Einstein once dabbled with an

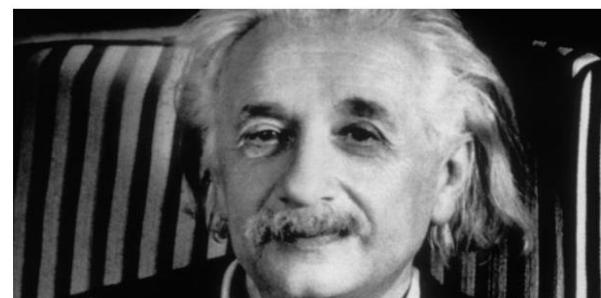


www.irishtimes.com/news/science/wit-researchers-discover-lost-einstein-model-of-universe-1.1713487

Apps Getting Started Imported From Firefox Getting Started Latest Headlines Waterford Institute of... Couch Tuner TV Video... Outlook Web App

THE IRISH TIMES

Science


Monday, March 10, 2014

News Sport Business Debate Life & Style Culture Offers

News / Science

### WIT researchers discover 'lost' Einstein model of universe

Scientists uncovered misfiled papers while searching Jerusalem university's online archive



Latest Ireland »

12:26 Quinn confirms Flannery approached hm with Rehab concerns

09:07 Man in his twenties stabbed in north Dublin

09:05 Family hope public appeal will help daughter beat cancer

08:42 Gardai investigate death of woman in Dublin

08:25 Flannery faces call from all parties to attend PAC

ADVERTISEMENT

The way back isn't so simple



# Scientific context

## ■ Hubble's law (1929)

*Linear relation between redshift and distance*



## ■ Crisis for cosmology

*What is causing the galaxies to move?*

## ■ Expansion of space?

*Predicted by general relativity*

## ■ Friedman-Lemaître models

*Friedman's expanding universe (1922)*

*Lemaître's expanding universe (1927)*

Velocity-Distance Relation among Extra-Galactic Nebulae.

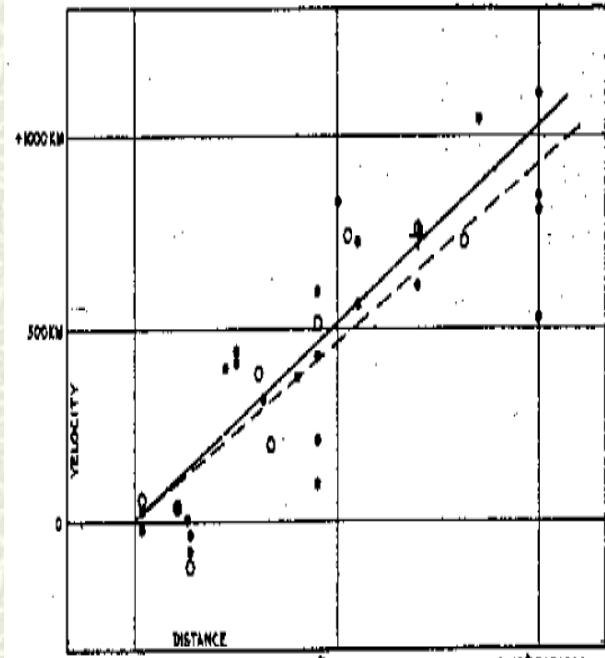



FIGURE 1

# Introduction to general relativity

## # Space+time = space-time

*Spacetime dynamic (1905)*

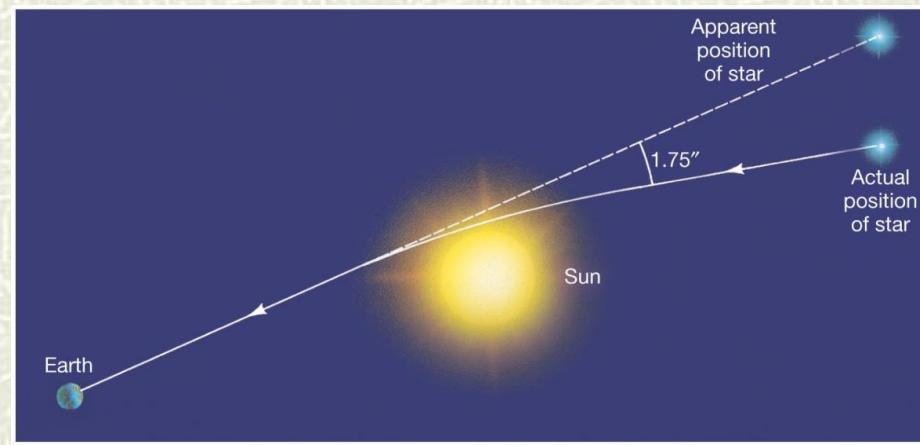


## # Spacetime distorted by mass

*Distortion causes other mass to move (1915)*

## Gravity = curvature of space-time

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$


## # Dyson/Eddington expeditions (1919)

*Measure bending of light?*

*Successful result*

*General relativity well-known*

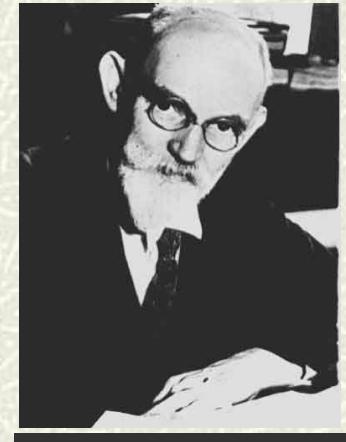
*Albert Einstein*



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

# Relativity and the universe

## *Einstein model (1917)*


- # Assume static universe
- # Add cosmic constant term to give static solution
- # Closed curvature, finite radius



$$G_{\mu\nu} + \lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

## *De Sitter (1917)*

- # Empty universe
- # Apparently static (co-ordinate system)
- # Prediction of redshifts



# Friedman models of the cosmos

- # Allow time-varying solutions to the field equations

*Expanding, contracting universes*

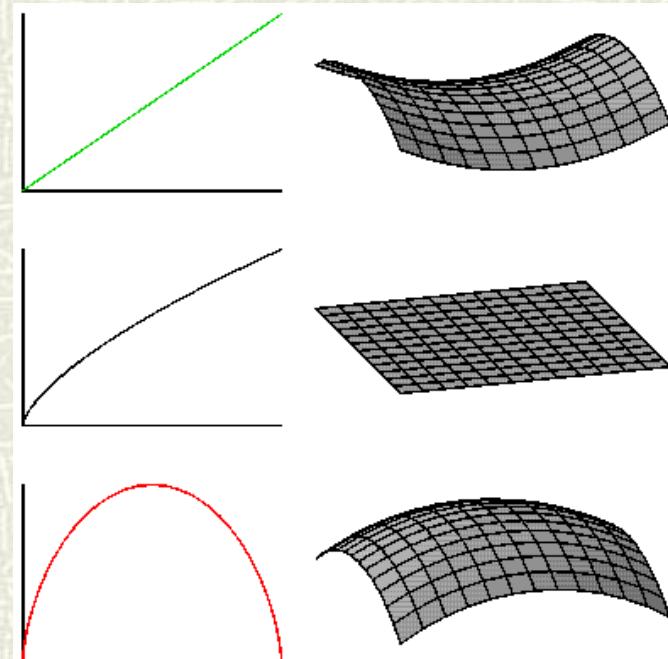


- # Geometry, evolution depends on matter content

*Positive curvature (1922)*

*Hyperbolic curvature (1924)*

*Alexander Friedman 1888 -1925*


- # Mathematical models (Zf. Ph.)

*To be decided by astronomy*

- # Ignored by community

*Disliked by Einstein*

*Correction and retraction*



# Lemaître's universe (1927)



## # Time-varying solutions to the field equations

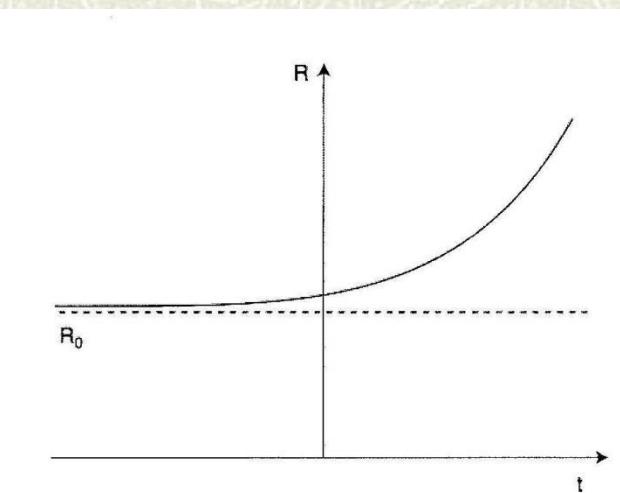
*Expanding universe?*

## # Redshifts of galaxies = expansion of space?

*Rate of expansion from mean distances and redshifts*

$$H = 585 \text{ km/s/Mpc} \quad (1927)$$

*Fr Georges Lemaître*


## # Rejected by Einstein

*“Votre physique est abominable”*

*Ditto for Friedman*

## # No beginning: indefinite age

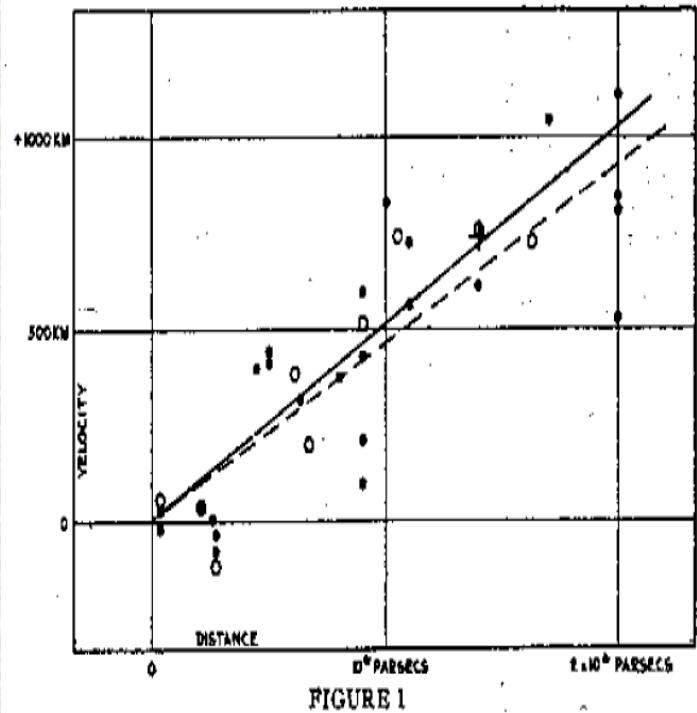
*Starts from Einstein universe at  $t = -\infty$*

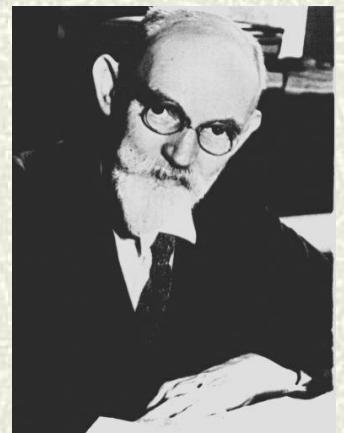


# The paradigm shift

- **Hubble's law (1929)**  
*Linear relation between redshift and distance*
- **RAS meeting (1930)**  
*Einstein/de Sitter models don't fit data*  
*New model required*
- **Hubble's law = cosmic expansion?**  
*If redshifts are velocities (Zwicky)*  
*If effect is non-local*
- **Letter from Lemaître**  
*Recalls his 1927 model*  
*Eddington, de Sitter impressed*

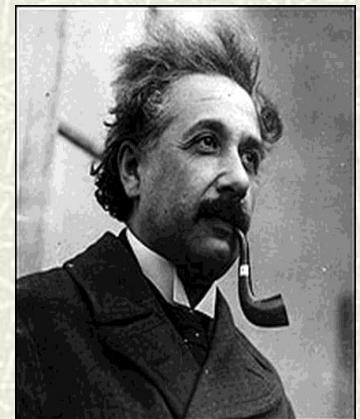
Velocity-Distance Relation among Extra-Galactic Nebulae.





FIGURE 1

*Cosmic expansion?*

# The expanding, evolving universe (1930 -32)


- **Eddington (1930, 31)**

*On the instability of the Einstein universe  
Expansion caused by condensation?  
The Eddington-Lemaître model*



- **de Sitter (1930, 31)**

*Further remarks on the expanding universe  
Expanding universes of every flavour*



- **Tolman (1930, 31)**

*On the behaviour of non-static models  
Expansion caused by annihilation of matter ?*

- **Einstein (1931, 32)**

*Friedman-Einstein model  $\lambda = 0, k = 1$   
Einstein-deSitter model  $\lambda = 0, k = 0$*

***Evolving models***

# Einstein's 1931 model (*F-E*)

ZUM KOSMOLOGISCHEN  
PROBLEM DER ALLGEMEINEN  
RELATIVITÄTSTHEORIE

VON

A. EINSTEIN

SONDERAUSGABE AUS DEN SITZUNGSBERICHTEN  
DER PREUßISCHEN AKADEMIE DER WISSENSCHAFTEN  
PHYS.-MATH. KLASSE. 1931. XII

## # Hubble's observations

*Expanding cosmos*

## # Adopts Friedman 1922 analysis

*Set cosmic constant  $\lambda = 0$*

*Friedman-Einstein universe*

## # Extract parameters

*Density of matter:  $\rho \sim 10^{-26} \text{ g/cm}^3$*

*Size of universe:  $P \sim 10^8 \text{ light-years}$*

*Some numerical inconsistencies*

## # Translation and analysis?

*Brendan McCann – use original MS?*

*COR – use Oxford blackboard instead*

$$\begin{aligned}
 D &= \frac{1}{c} \frac{1}{\ell} \frac{d\ell}{dt} = \frac{1}{c} \frac{1}{P} \frac{dP}{dt} \\
 D^2 &= \frac{1}{P^2} \frac{P_0 - P}{P} \sim \frac{1}{P^2} \quad (1a) \\
 D^2 &= \frac{K\varrho}{3} \frac{P_0 - P}{P} \sim \frac{1}{3} K\varrho \quad (2a) \\
 D^2 &\sim 10^{-53} \\
 \varrho &\sim 10^{-26} \\
 P &\sim 10^8 \text{ L.J.} \\
 t &\sim 10^{10} (10^{11}) \text{ J}
 \end{aligned}$$

# EPJ H



Recognized by European Physical Society

Historical Perspectives  
on Contemporary Physics

An image of the blackboard  
used in Einstein's 2nd Rhodes  
lecture at Oxford in April 1931  
(reproduced by permission of  
the Museum of the History of  
Science, University of Oxford)

*Einstein's cosmic model  
of 1931 revisited:  
An analysis and translation  
of a forgotten model  
of the universe*

by Cormac O'Raifeartaigh  
and Brendan McCann

$$D = \frac{1}{c} \frac{1}{\ell} \frac{dl}{dt} = \frac{1}{c} \frac{1}{P} \frac{dP}{dt}$$

$$D^2 = \frac{1}{P^2} \frac{P_0 - P}{P} \sim \frac{1}{P^2} \quad (1a)$$

$$D^2 = \frac{K_0}{3} \frac{P_0 - P}{P} \sim \frac{1}{3} K_0 \quad (2a)$$

$$D \sim 10^{-53}$$

$$\rho \sim 10^{-26}$$

$$P \sim 10^3 \text{ erg}$$
  
$$t \sim 10^{40} (10^{41}) \text{ J}$$

# Surprise: Einstein's steady-state model

© The Hebrew University of Jerusalem

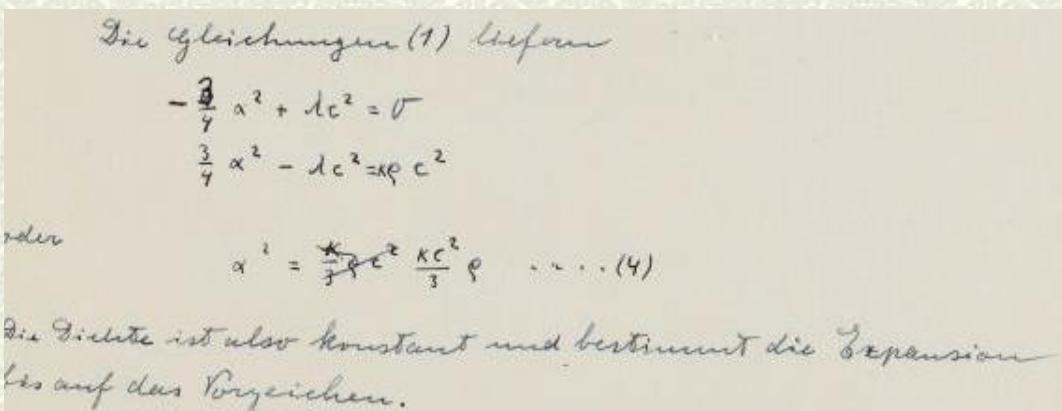
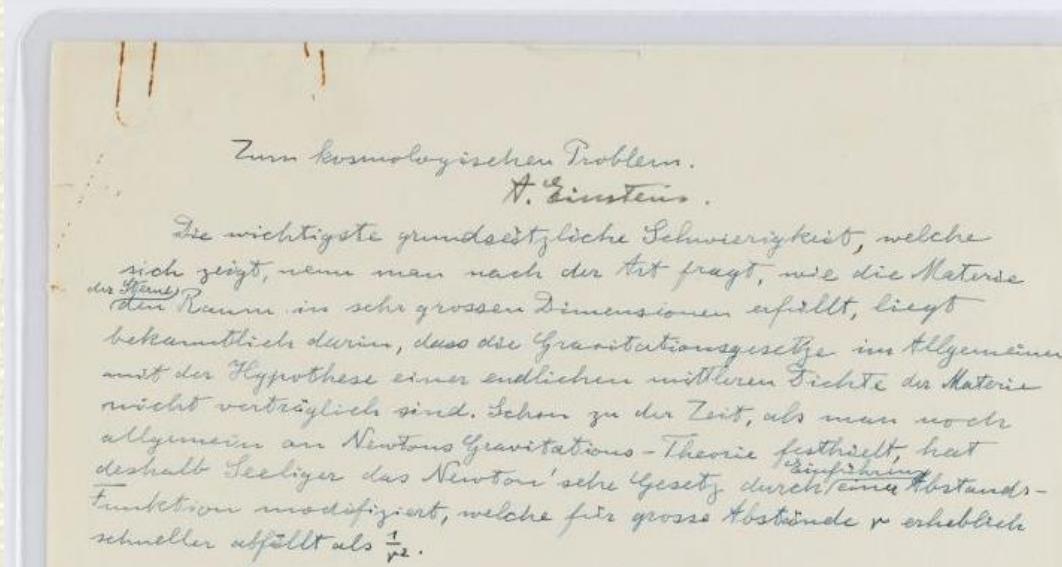
האוניברסיטה העברית בירושלים

## ▣ Filed as draft of 1931 F-E model

*Similar title, opening*

## ▣ Cites Hubble's law

*Cosmic expansion?*



## ▣ Cites evolving models (Tolman)

*Discusses age problem*

## ▣ Proposes alternative solution

*Constant density*

*Determines the expansion*



# Einstein's steady-state model: key quotes

---

Transl. BMC

## New solution

*“In what follows, I wish to draw attention to a solution to equation (1) that can account for Hubble's facts, and in which the density is constant over time”*

## Matter creation

*“If one considers a physically bounded volume, particles of matter will be continually leaving it. For the density to remain constant, new particles of matter must be continually formed within that volume from space “*

## Dark energy

*“The conservation law is preserved in that, by setting the  $\lambda$ -term, space itself is not empty of energy; its validity is well known to be guaranteed by equations (1).”*

# Why was the model not published?

## # Model fails

*De Sitter metric*

*No creation term in GFE*



## # Null solution masked by error

*Error in Christoffel coefficient*

*9/4 instead of -3/4*

*Werner Nahm*

*Simon Mitton*

## # Einstein's crossroads

*Realised problem on revision*

*Declined to alter GFE*

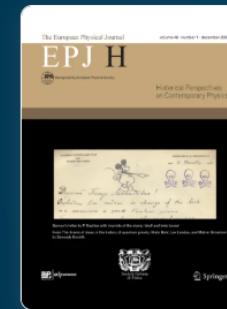
Die Gleichungen (1) liefern

$$-\frac{3}{4} \alpha^2 + \lambda c^2 = 0$$
$$\frac{3}{4} \alpha^2 - \lambda c^2 = \kappa \rho c^2$$

oder

$$\alpha^2 = \frac{\kappa \rho c^2}{\frac{3}{4} \lambda c^2} \quad \dots \quad (4)$$

Die Dichte ist also konstant und bestimmt die Expansion bis auf das Vorzeichen.


## # Switched to evolving models

*Less contrived and set  $\lambda = 0$*

# Einstein's steady-state theory: an abandoned model of the cosmos

Published: 20 June 2014

Volume 39, pages 353–367, (2014) [Cite this article](#)



[Download PDF](#)

Access provided by Access provided by South East Technological University

## The European Physical Journal H

[Aims and scope](#) →

[Submit manuscript](#) →

Cormac O'Raifeartaigh , Brendan McCann, Werner Nahm & Simon Mitton

351 Accesses 40 Citations 190 Altmetric 33 Mentions [Explore all metrics](#) →

## Abstract

We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a 'steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.

# The steady-state universe (1948)

## # Expanding but unchanging universe

*Hoyle, Bondi and Gold (1948)*

*No beginning, no age paradox*

*No assumptions about physics of early epochs*



## # Continuous creation of matter

*Bondi, Gold and Hoyle*

*Very little matter required*

## # Replace $\lambda$ with creation term (Hoyle)

$$G_{\mu\nu} + C_{\mu\nu} = k T_{\mu\nu}$$

*Conservation of energy violated*



## # Improved version (1962)

$$G_{\mu\nu} + \lambda g_{\mu\nu} = k T (C_\mu + C_\nu)$$

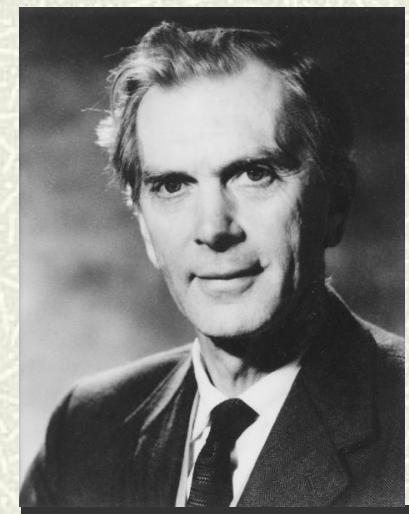
*Hoyle and Narlikar (1962)*

# A bitter debate (1950-1965)

## ‡ Steady-State or Big Bang universe?

*Unchanging or evolving universe?*




## ‡ Study most distant galaxies

*Compare with local galaxies*

*Galaxy distribution over time?*

## ‡ Radio-astronomy (Ryle)

*Cambridge 3C Survey: evolving universe*



## ‡ Developments in optical astronomy

*Timescale of expansion (Baade)*

# Cosmic microwave background (1965)

## ■ Radio receivers (AT&T)

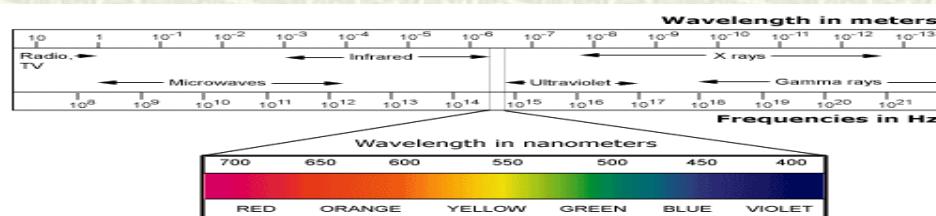
*Large, sensitive horn*

## ■ Ubiquitous radio signal

*From every direction*

## ■ Low frequency (microwave)

*Low temperature (3K)*


## ■ Echo of big bang

*Evidence of expansion*

*BB model goes mainstream*



*Penzias and Wilson*



# Why is Einstein's steady-state model interesting?

## ■ Unsuccessful theories important

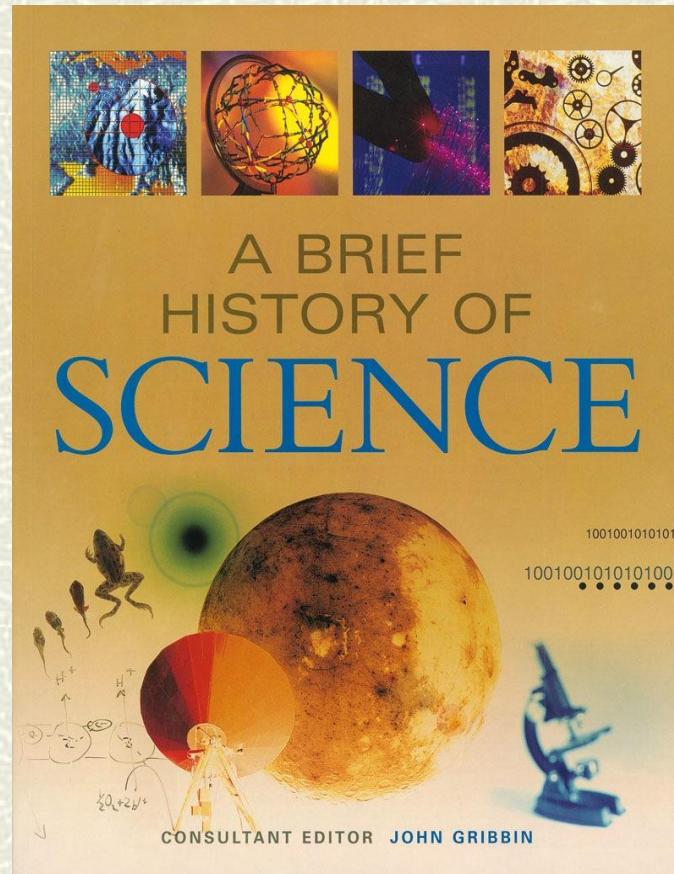
*Understanding the development of successful theories*

*'Whig' histories avoided*

## ■ A puzzle explained

*Steady-state solutions not considered before 1948?*

*Obvious possibility*


## ■ Insight into Einstein's cosmology

*Discards model rather than add new term to GFE*

*Occam's razor approach*

## ■ Some aspects of model still relevant

*Dark energy, inflation*



# The best tribute: both translations to be used in CPAE (18)



PRINCETON  
UNIVERSITY  
PRESS

Books

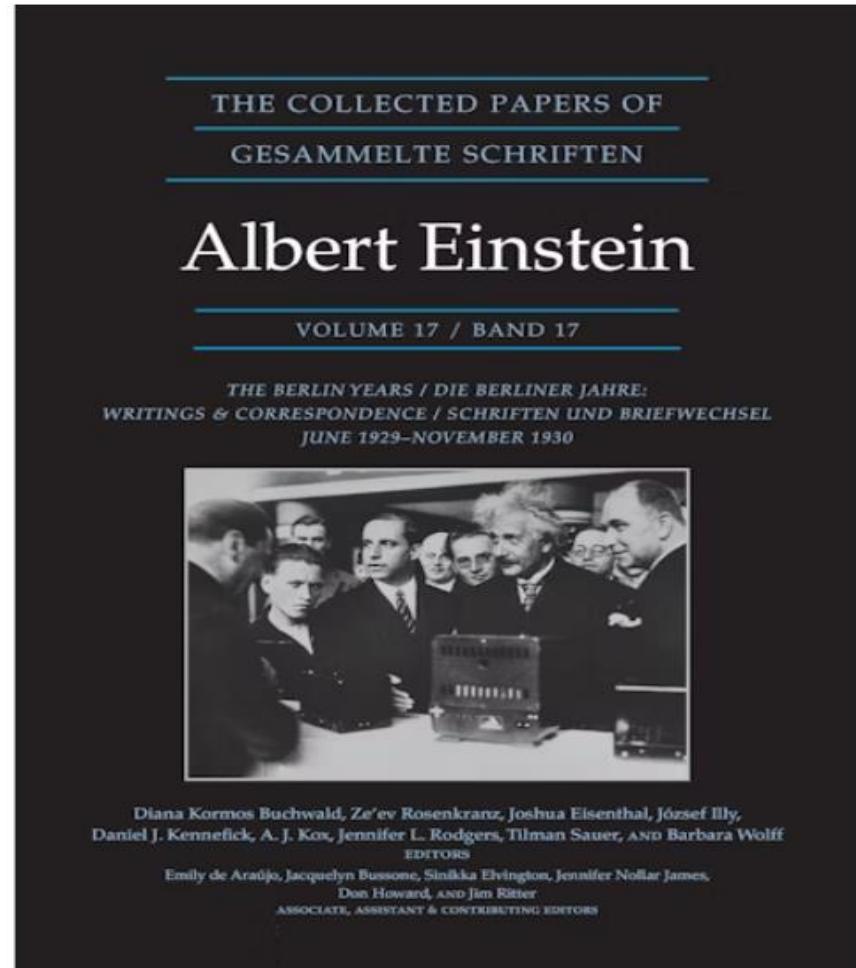
Resources

Ideas



History of Science & Knowledge

## The Collected Papers of Albert Einstein, Volume 17 (Documentary Edition): *The Berlin Years: Writings and Correspondence, June 1929– November 1930*


Albert Einstein

Edited by Diana Kormos Buchwald

A definitive scholarly edition of the  
correspondence and papers of Albert Einstein

Series:

Collected Papers of Albert Einstein



**nature** International weekly journal of science

Home | News & Comment | Research | Careers & Jobs | Current Issue | Archive | Audio & Video | For Authors

Archive > Volume 506 > Issue 7489 > News > Article

NATURE | NEWS



Top

## Einstein's lost theory uncovered

Physicist explored the idea of a steady-state Universe in 1931.

Davide Castelvecchi

24 February 2014

## New Discovery Reveals Einstein Tried To Devise A Steady State Model Of The Universe



+ Comment Now + Follow Comments

Almost 20 years before the late Fred Hoyle and his colleagues devised the [Steady State Theory](#), Albert Einstein toyed with a similar idea: that the universe was eternal, expanding outward with a consistent input of spontaneously generating matter.

An Irish physicist came across the paper last year and could hardly believe it. According to this week's article in [Nature](#),

model of the universe very different to today's [Big Bang Theory](#).



Rabobank The straight talking savings bank



The manuscript, which hadn't been referred to by scientists for decades,

# SCIENTIFIC AMERICAN™

[Sign In](#) | [Register](#)

Search ScientificAmerican.com



Subscribe

News & Features

Topics

Blogs

Videos & Podcasts

Education

Cit

Physics » Nature

84 Email Print

## Einstein's Lost Theory Uncovered

The famous physicist explored the idea of a steady-state universe in 1931

**nature**

Feb 25, 2014 | By Davide Castelvecchi and Nature magazine

A manuscript that lay unnoticed by scientists for decades has revealed that Albert Einstein once dabbled with an

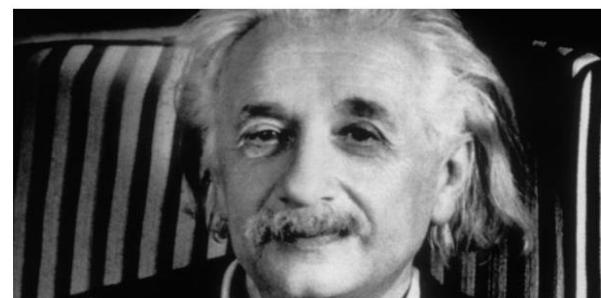


www.irishtimes.com/news/science/wit-researchers-discover-lost-einstein-model-of-universe-1.1713487

Apps Getting Started Imported From Firefox Getting Started Latest Headlines Waterford Institute of... Couch Tuner TV Video... Outlook Web App

THE IRISH TIMES

Science


Monday, March 10, 2014

News Sport Business Debate Life & Style Culture Offers

News / Science

### WIT researchers discover 'lost' Einstein model of universe

Scientists uncovered misfiled papers while searching Jerusalem university's online archive



Latest Ireland »

12:26 Quinn confirms Flannery approached hm with Rehab concerns

09:07 Man in his twenties stabbed in north Dublin

09:05 Family hope public appeal will help daughter beat cancer

08:42 Gardai investigate death of woman in Dublin

08:25 Flannery faces call from all parties to attend PAC

ADVERTISEMENT

The way back isn't so simple



# Worst moment



*I knew... your father*

Physics > History and Philosophy of Physics

# Einstein's steady-state theory: an abandoned model of the cosmos

Cormac O'Raifeartaigh, Brendan McCann, Werner Nahm, Simon Mitton

(Submitted on 1 Feb 2014 (v1), last revised 22 May 2014 (this version, v3))

We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a 'steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.

Comments: 22 pages, 2 figures. Includes first English translation of unpublished Einstein manuscript. Accepted for publication in *Eur.Phys.J.(H)*

Subjects: History and Philosophy of Physics (physics.hist-ph)

Cite as: arXiv:1402.0132 [physics.hist-ph]

(or arXiv:1402.0132v3 [physics.hist-ph] for this version)

## Download:

- PDF only

Current browse context

physics.hist-ph

< prev | next >

new | recent | 1402

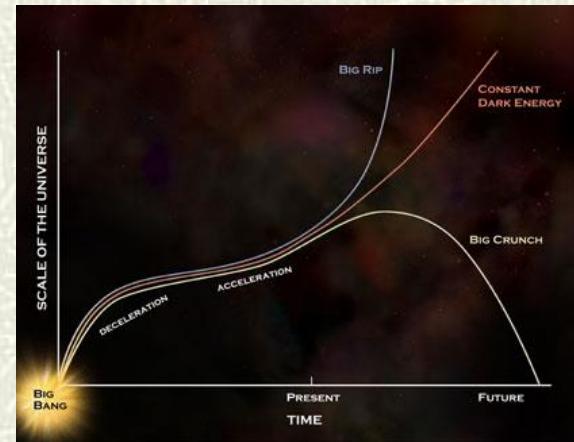
Change to browse by:

physics

References & Citations

- NASA ADS

2 blog links (what is this?)

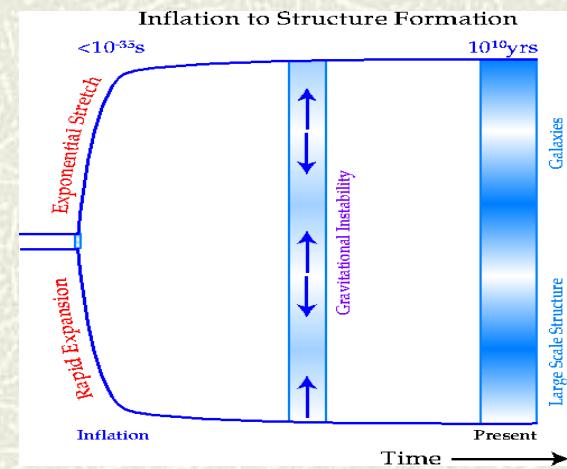

Bookmark (what is this?)



# Einstein's steady-state model and cosmology today

## # Dark energy (1998)

*Accelerated expansion (observation)*  
*Positive cosmological constant*




## # Einstein's dark energy

*“The conservation law is preserved in that, by setting the  $\lambda$ -term, space itself is not empty of energy; its validity is well known to be guaranteed by equations (1).”*

## # Cosmic inflation

*Inflationary models use de Sitter metric*  
*Used in all steady-state models*  
*Flat curvature, constant rate of matter creation*  
*Different time-frame!*



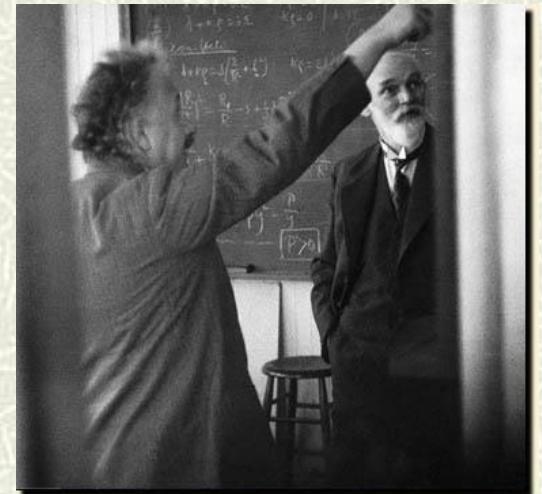
# Einstein-deSitter model (1932)

## # Remove curvature

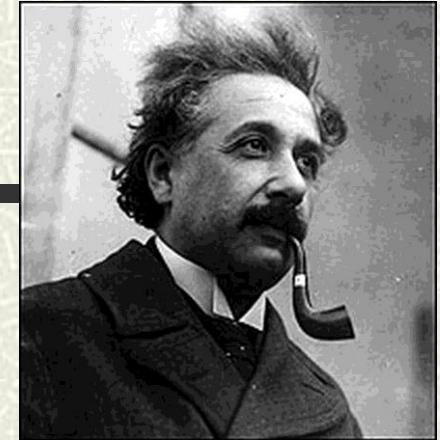
*Not known (Occam's razor)*

## # Adopt Friedmann analysis

*Time-varying universe with  $\lambda = 0, k = 0$*


*Critical universe*

## # Calculate critical density


$10^{-28} \text{ g/cm}^3$  : *agrees with astrophysics*

## # Well-known model

*Despite age problem*



# Einstein's 1931 model (F-E)



## # Numerical estimates of radius and density

*Use Hubble parameter*

$$P \sim 10^8 \text{ light-years}, \rho \sim 10^{-26} \text{ g/cm}^3$$

*Oxford lecture (May 1931)*

## # Calculations problematic

$$H_0 \sim 500 \text{ km s}^{-1} \text{ Mpc}^{-1} : D^2 \sim 10^{-55} \text{ cm}^{-2}$$

## # Age estimate problematic

*Age from Friedman*

## # Not a periodic solution

*“Model fails at  $P = 0$ ”*

$$\begin{aligned} D &= \frac{1}{c} \frac{1}{\ell} \frac{d\ell}{dt} = \frac{1}{c} \frac{1}{P} \frac{dP}{dt} \\ D^2 &= \frac{1}{P^2} \frac{P_0 - P}{P} \sim \frac{1}{P^2} \quad (1a) \\ D^2 &= \frac{K_0}{3} \frac{P_0 - P}{P} \sim \frac{1}{3} K_0 \quad (2a) \\ D^2 &\sim 10^{-53} \\ \rho &\sim 10^{-26} \\ P &\sim 10^8 \text{ J} \\ t &\sim 10^{10} (10^{11}) \text{ J} \end{aligned}$$