# The expanding universe and the big bang

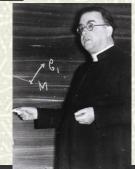
Cormac O'Raifeartaigh (WIT)



kmn

Plus: New results from PLANCK

### Overview


- **★ The runaway galaxies**Slipher's redshifts and Hubble's law
- **★ The expanding universe**Einstein vs Friedmann and Lemaitre
- **The big bang model**Lemaitre's fireworks universe
- **♯ A cosmic fossil (1965-)**The cosmic microwave background







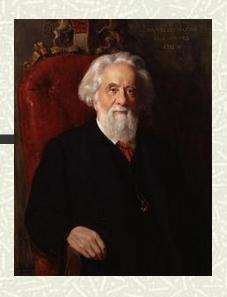




# I The runaway galaxies

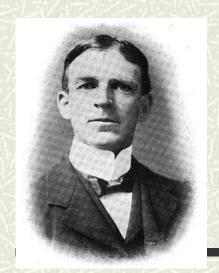
- **♯** Nebulae observed by Marius, Halley, Messier (1614)
- Wilhem HerschelCatalogue of a thousand (1786)36-inch reflecting telescope
- Earl of Rosse72-inch reflecting telescope (1845)Some nebulae have spiral structure, stars

Problem of resolution, distance









## Spectroscopy

- Spectroscopy and photography (19<sup>th</sup> cent)
   Emission and absorption lines of celestial objects
- □ Composition of the stars
   William Huggins and spectroscopy
- Motion of the stars
   William Campbell and the Doppler Effect
- ★ Composition of the spiral nebulae?
   Difficult to resolve



Sir **William Huggins** (1824 – 1910)

**William Campbell** ( 1862 – 1938)



## The Lowell observatory

- ★ Modest refracting telescope (24-inch)
   Flagstaff, Arizona
- **♯** Founded by Percival Lowell (1894) *Eccentric astronomer*
- **♯** Controversial Canals on Mars
- # Employed Vesto Slipher (1901)

  \*\*Brashear spectrograph\*\*
- **#** Spectroscopy of the nebulae?

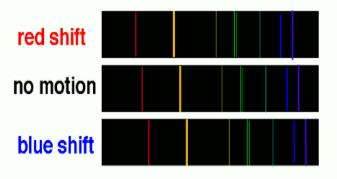


Percival Lowell (1855 – 1916)



## Spectra of the nebulae

- Analyse light of the spiral nebulae? (1909) Evolving solar system? Lowell
- Slipher reluctant
   Larger telescopes failed
- Experiments with spectrograph camera Good results with fast camera lens
- Clear spectrum for Andromeda nebula (1912)


  Significantly blue-shifted

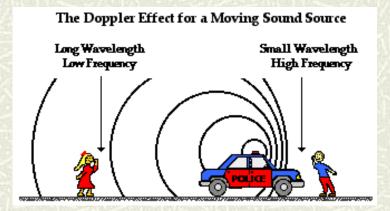
  Approaching at 300 km/s

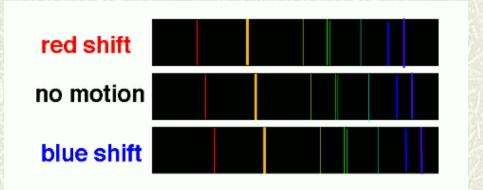


Vesto Slipher

$$\Delta \lambda / \lambda = v/c$$




## The Doppler effect




Frequency of light depends on relative motion of observers

Doppler Effect

measure motion of object from frequency of light emitted





## Slipher's redshifts

- 25 nebulae redshifted (1917)
   Large outward velocities
   Some receding at 1000 km/s
- Much faster than stars
  Not gravitationally bound by MW?
- Island universe debate "Island universe hypothesis gains favour"
- More measurements

  More redshifts



#### RADIAL VELOCITIES OF TWENTY-FIVE SPIRAL NEBULE.

| Nebula,    | Vel.      | Nebula.     | Vel.      |
|------------|-----------|-------------|-----------|
| N.G.C. 221 | - 300 km. | N.G.C. 4526 | + 580 km. |
| 224        | - 300     | 4565        | +1100     |
| 598        | - 260     | 4594        | +1100     |
| 1023       | + 300     | 4649        | +1000     |
| 1068       | +1100     | 4736        | + 290     |
| 2683       | + 400     | 4826        | + 150     |
| 3031       | - 30      | 5005        | + 900     |
| 3115       | + 600     | 5055        | + 450     |
| 3379       | + 780     | 5194        | + 270     |
| 3521       | + 730     | 5236        | + 500     |
| 3623       | + 800     | 5866        | + 650     |
| 3627       | + 650     | 7331        | + 500     |
| 4258       | + 500     | ,,,,        |           |

## The Great Debate (1920)

#### Distinct galaxies

- **■** Redshifts not gravitationally bound?
- **■** Stellar structure of spiral nebulae
- ■ Many faint novae great distance?

### <u>OR</u>

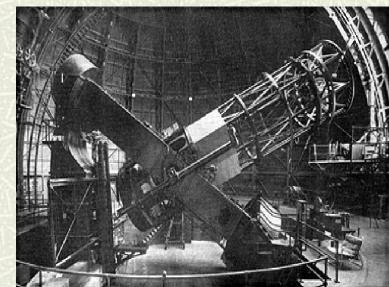
### One galaxy

- **■** Size of Milky Way (300,000 Lyr)
- **♯** Rotation data (Van Maanen)
- ★ Andromeda nova (supernova)



Harlow Shapley vs Heber Curtis



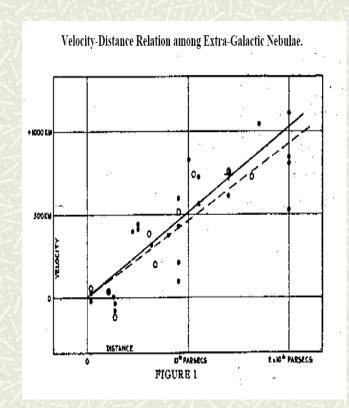

# Hubble's answer (1925)

- # Edwin Hubble (1921)
- **#** Ambitious astronomer
- **♯** Hooker telescope (Mt Wilson, 1917)
- **■** 100-inch reflector
- **♯** Resolved <u>Cepheid stars</u> in nebulae
- **♯** Known luminosity and distance
- **♯** Far beyond Milky Way! (1925)

Nebulae are distinct galaxies



Edwin Hubble (1889-1953)



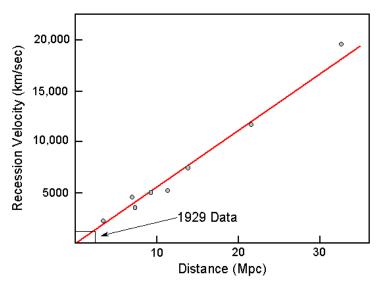

## A velocity/distance relation (1929)

- # What do the velocities of the galaxies mean?
- **♯** Is there a relation between distance and velocity?
- **#** Combine 24 distances with Slipher redshifts
- **♯** Approx linear relation: **Hubble's law**

Furthest galaxies receding fastest

Slipher not acknowledged




m = 585 km/s/Mpc

## Justification (1931)

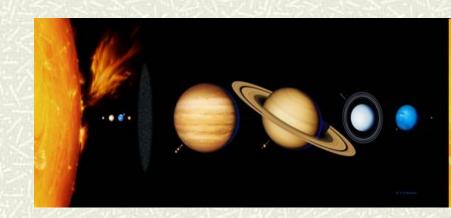
- **■** Distances for 40 galaxies
- **#** Redshifts for 40 galaxies
- **■** Reduced scatter linear relation
- # Justification

Explanation?
Not the expanding universe

#### Hubble & Humason (1931)



## The expanding universe


- What do the redshifts represent?
- Recession velocities for distant galaxies?
- If so, why?
- Newtonian gravity pulls in  $F = GMm/r^2$

What is pushing out?

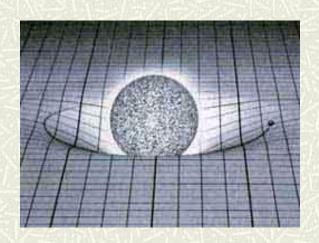
Space, time fixed



Isaac Newton



## General relativity (1915)


- Space+time = space-time
- Space-time dynamic
- Distorted by motion, mass
- Causes other mass to move

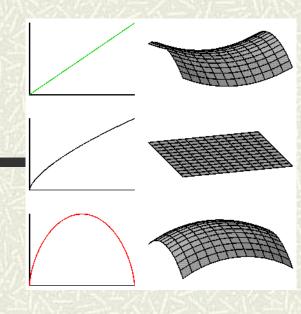
#### Gravity = curvature of space-time

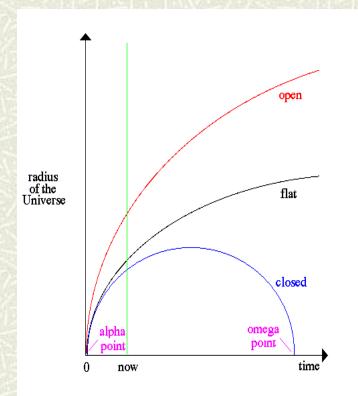
$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

• Eddington experiment (1919)



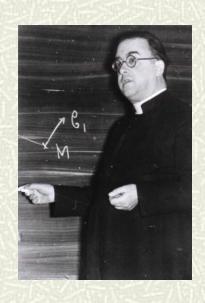



# The evolving universe


#### Apply Einstein's gravity to the cosmos

- **♯** Predicts time-varying radius
- **■** Space expanding or contracting *Gravity vs expansion*
- $\blacksquare$  Depends on matter  $\Omega = d/d_c$
- # Positive or negative curvature

**Friedman:** 3 possibilities (1924) *Rejected by Einstein: static universe* 

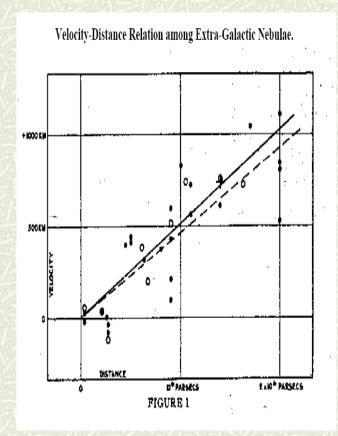

$$G_{\mu\nu} + \lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$





## Lemaitre's expanding universe (1927)

- **♯** Aware of Slipher redshifts
- **★** Redshifts = expansion of space?
- **♯** New solution of Einstein's equations
- **Expanding universe**
- $\blacksquare$  Rate of expansion = 585 km/s/Mpc




Fr Georges Lemaitre

Obscure journal Rejected by Einstein

## The expanding universe (1931)

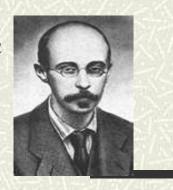
- **#** Hubble-Slipher graph (1929)
- # Einstein, de Sitter static models don't fit
- **♯** Lemaitre paper translated (MNAS, 1931)
- **#** Satisfactory explanation
- **♯** Space is expanding (relativists)
- **★** More evidence from Hubble/Humason (1931)



Expansion of <u>space</u>

## Who discovered the expanding universe?

- # Einstein Framework
- # Friedman *Evolving universe*
- # Hubble, Slipher Observational evidence
- **■** Lemaitre *Expanding universe* + *experiment*

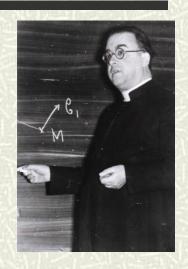

'Hubble graph' should be Hubble-Slipher graph 'Hubble expansion 'should be Hubble-Lemaitre expansion

Astronomers sceptical (Hubble)

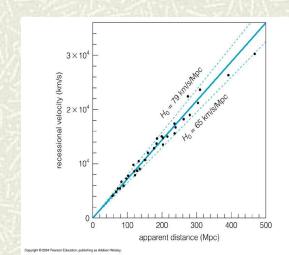








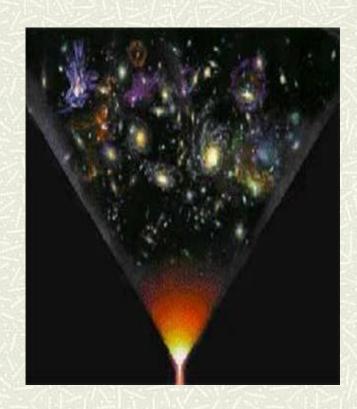




## III The big bang model

- **♯** Lemaitre: rewind Hubble graph
- $\blacksquare$  U smaller in the past
- # Tiny volume originally
- # Extremely dense, extremely hot
- **■** Expanding and cooling since

Density = clock




Fr Georges Lemaitre



# Lemaitre's 'primeval atom' (1931)

#### **Problems**

- Wrong age (from expansion)
- Singularity problem  $\lim_{x\to 0} (1/x)$
- Where do the laws of physics come from?
- Where does spacetime come from ?
- Smacks of religion (Einstein)



 $\infty$  density,  $\infty$  temp at t = 0?

### New evidence

- **♯** Nuclear physics (1940s)
- **■** Did the chemical elements form in the stars?
- **■** Not all of them
- **■** In Lemaitre's primeval furnace?
- **#** *H*, *He* nuclei (1 s)
- **#** Predicts U = 75% **H**, 25% **He**
- **♯** Agrees with observation

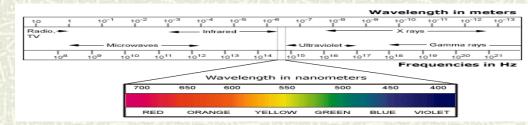
Heavier atoms formed in stars



Georges Gamow



### More evidence: cosmic radiation?


- **♯** Infant universe very hot indeed
- # Full of radiation
- **★** Released when atoms formed (300,000 yr)
- **♯** Still observable today?

Low temp, microwave frequency

No-one looked (1940s)



Alpher, Gamow and Herman



## Cosmic microwave background (1965)

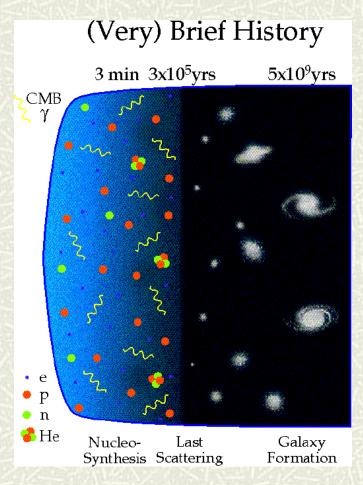
#### CMB discovered accidentally

**♯** Universal signal

**♯** Low frequency (microwave)

**■** Low temperature (3K)

Penzias and Wilson

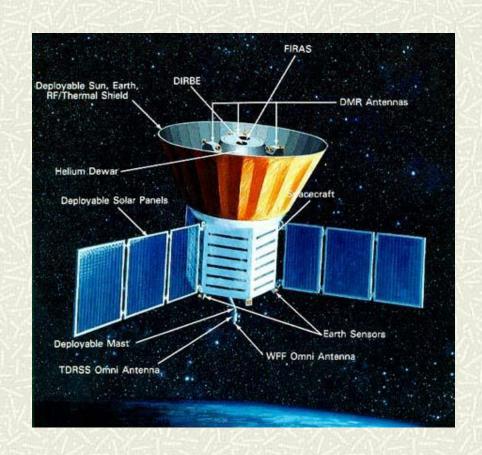

Echo of Big Bang!

BB model goes mainstream

# The big bang – evidence

- $\sqrt{1}$ . The expansion of the U
- $\sqrt{2}$ . The abundance of H and He
- $\sqrt{3}$ . The cosmic background radiation
- $\sqrt{4}$ . The distribution of galaxies

Expanding and cooling

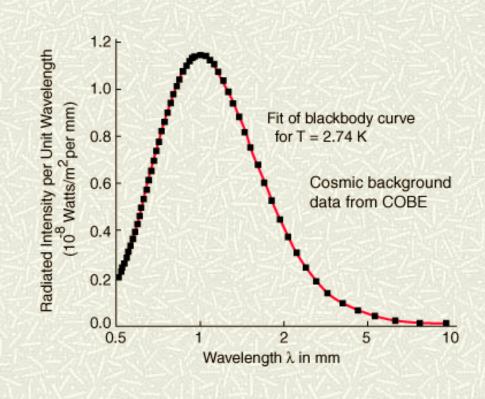



How did it start?

### IV Modern measurements of the CMB

- Details of background radiation
- Full spectrum
- Comparison with theory
- Perturbations?

- Balloon experiments
- Satellite experiments




COBE satellite (1992)

### COBE measurements of CMB

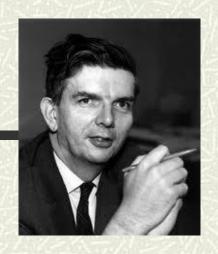
- Expected temperature
- Expected frequency
- Perfect blackbody spectrum

- Radiation very uniform
- Variation of 1 in 10<sup>5</sup>
- Seeds of galaxies?

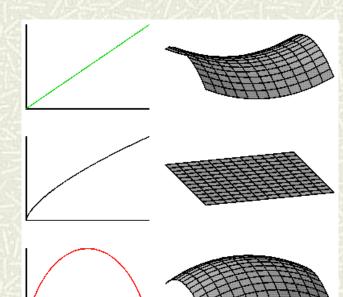


COBE (1992)

Nobel Prize


### **Problems**

### **Background radiation raised new questions**



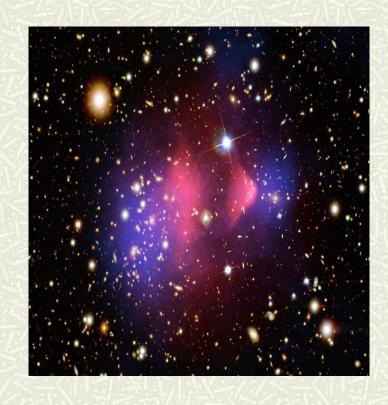

- **■** Galaxy problem how did galaxies form?
- **♯** Flatness problem *fine balance?*

Conflict between theory and experiment Astrophysics:  $\Omega = 0.3$ 



Robert Dicke




### Dark Matter

- # First suggested in 1930s
- # Stellar motion

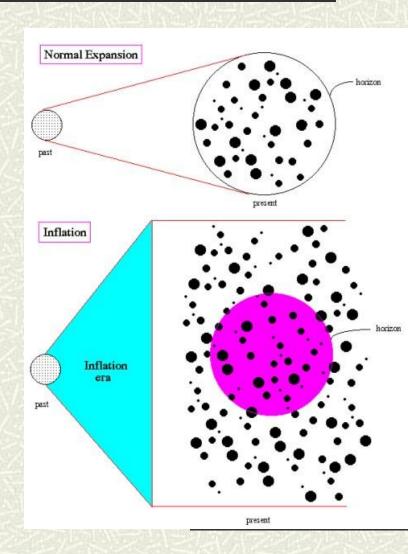
### normal gravitational effect but cannot be seen directly

- # Explains motion of stars
- **■** Explains motion of galaxies
- # Explains gravitational lensing

Matter = OM(20%) + DM(80%)



$$\Omega = 0.3$$
?


## The Theory of Inflation

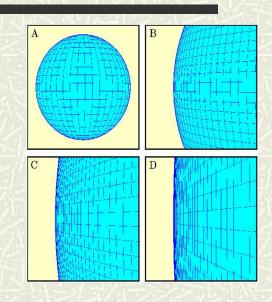
- **♯** Initial **exponential expansion**
- **♯** Driven by *phase transition*

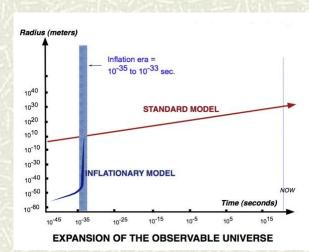
### Repulsive force

- $\blacksquare$  Expansion of  $10^{35}$  in  $10^{-32}$  s
- **#** Smooths out inhomogeneities
- **#** Smooths out curvature

'No hair' universe

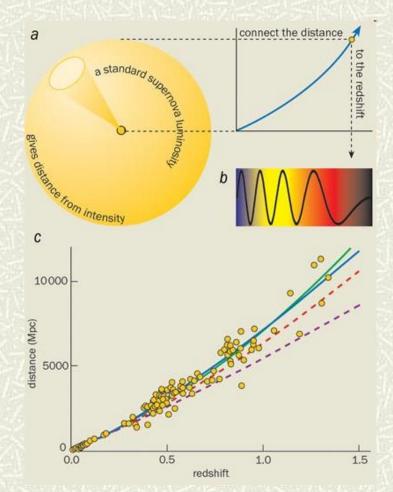



# The inflationary universe (1981)


- **♯** Solves horizon problem Early U incredibly small
- Solves flatness problem
   Geometry driven towards flatness
- ★ Mechanism for galaxy formation

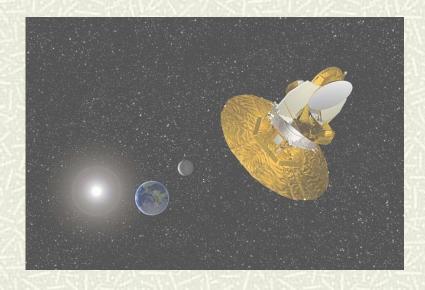
  Quantum fluctuations inflated

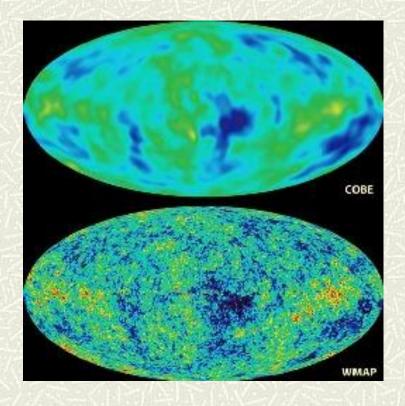
$$\Omega = 1$$
?


Conflict between theorists and experimentalists






## Supernova astronomy (1998)


- **♯** Supernovae as standard candles (1998)
- # Furthest galaxies too far away
- # Expansion speeding up
- $\blacksquare$  Geometry of U flat  $(\Omega = 1)$
- **■** Support for inflation

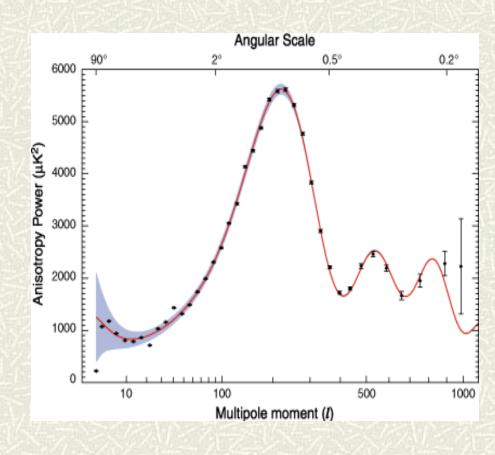


## WMAP Satellite (2002)

- Details of *CMB* spectrum
- Details of galaxy formation
- Details of flatness of U
- Dark energy?






Cosmic microwave background

## WMAP measurements of CMB (2005)

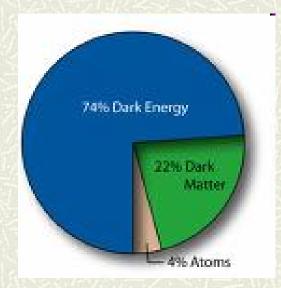
- $\blacksquare$  Spectrum of T variations
- **♯** Geometry is flat (to 1%)
- **■** Dark energy 74%

Strong support for inflation

Strong support for dark energy



Fit to theory


## Modern big bang model: A-CDM

A flat, accelerating universe containing matter, dark matter and dark energy

1. Ordinary matter: 4% (astrophysics)

2. Dark matter: 22% (astrophysics)

3. Dark energy: 74% (supernova, CMB)



**ACDM** 

 $\Omega = 1$ 

## Cause of acceleration: dark energy

- **♯** Predicted by relativity
- **■** Cosmological constant
- ★ Natural tendency of space to expand
- # Energy of vacuum?
- # Why so small?
- **♯** Why of similar density to matter?
- **♯** Not well understood
- **#** Fate of universe?

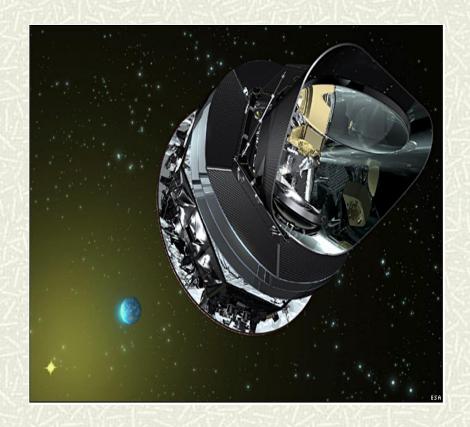


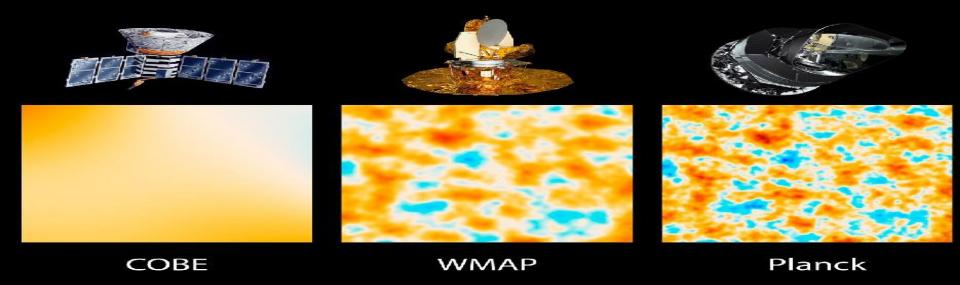
### New results: Planck Satellite (ESA, 2013)

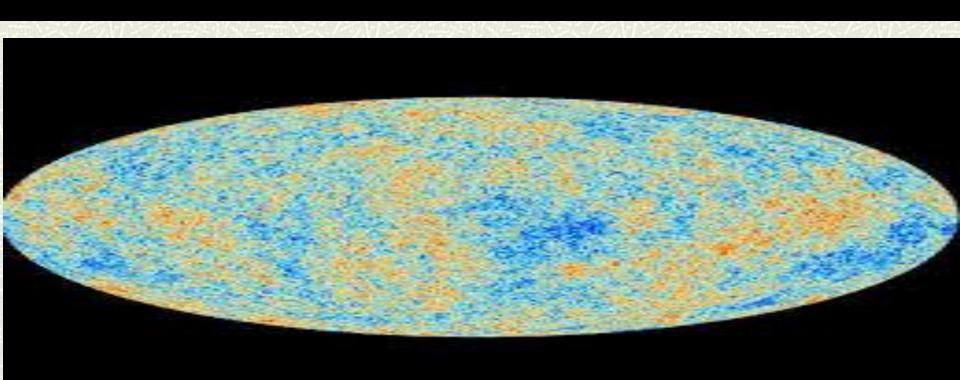
### 1. Improved sensitivity

 $\Delta T/T \approx 1 \times 10^{-6}$ 

### 2. Full spectrum of T anisotropy


New acoustic peaks :scale invariance? Accurate values for  $\Omega_{\Lambda}$  ,  $\Omega_{M}$ 


### 3. Gravitational lensing


Remove degeneracies

#### 4. Polarization measurements

*E-modes: fluctuations B-modes: gravity waves?* 

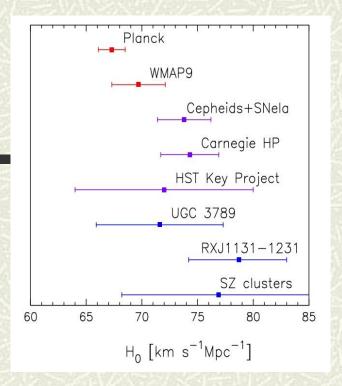


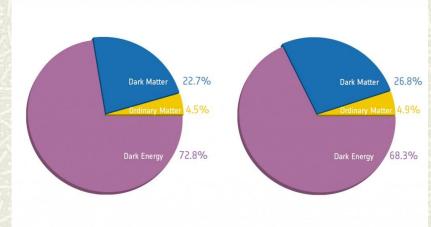




### Planck results (2013)

#### 1. New Hubble constant


$$67.3 + -1.2 \text{ km/s/MPC}$$
  
 $Age = 13.8 \text{ billion yr}$ 


#### 2. Curvature; flat

$$\Omega_k = -0.0005 + -.07$$

### 3. New mass/energy parameters

$$\Omega_{\Lambda} = 68$$
,  $\Omega_{\rm DM} = 27$ ,  $\Omega_{\rm OM} = 4.9 \%$ 



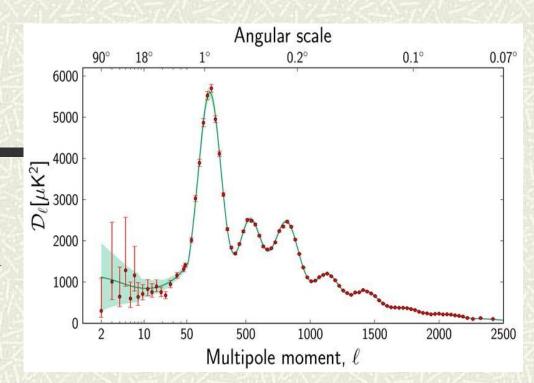


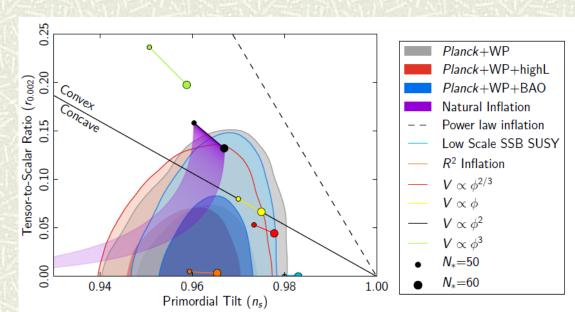
After Planck

Before Planck

### Planck Results

#### 1. Power spectrum


*Not scale invariant*  $n_s = 0.96$ 


### 2. Compatible with inflation

Simple 'slow-roll' models Higgs-type field?

### 3. Complex inflation out

Double field out Hybrid models out Cyclic models out

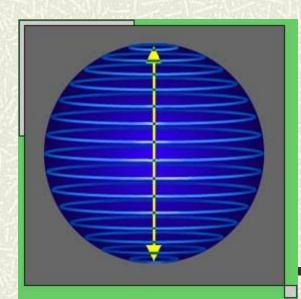




### Next: Planck 2014

- 1. More on inflation models? Higgs-types field?
- 2. More on dark energy Echo of inflation?
- 3. Polarization measurements *E-modes and <u>B-modes</u>*
- 4. Gravity waves
  Support for inflation
  Unified field theory






### The big bang - problems

- **★** Nature of dark energy? *Role in BB*?
- **★** Which model of inflation? *The multiverse?*
- **♯** The singularity problem

What banged?
What does time zero mean?
No-boundary universe





## The singularity: a cyclic universe?

- **■** Breakdown at time zero
- ★ No model of bang itself
- **♯** Multiple bangs?
- # Colliding branes
- **♯** Prediction of string theory
- # Cyclic universe
- # Eternal universe



Cyclic universe

Tests? Non-Gaussianities in CMB