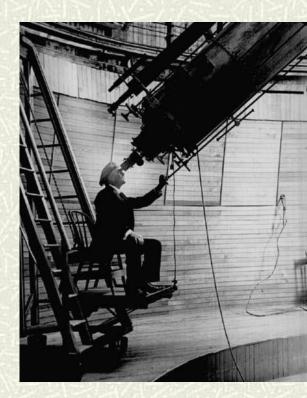
VM Slipher and the discovery of the expanding universe

Overview

♯ A brief history of experiment (1912-1931)

The redshifts of the nebulae (Slipher)
The distances to the nebulae (Hubble)
The Hubble-Slipher graph


★ A brief history of theory (1915-1931)

The static universes of Einstein and de Sitter
The dynamic universes of Friedman and Lemaitre

- **★** The expanding universe (1931)
- **■** On the naming of laws and equations

Vesto Slipher 1875-1969

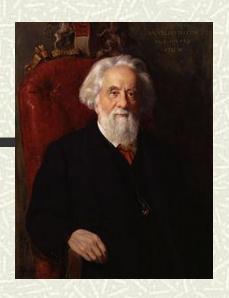
I The nebulae

- # Observed by Marius (1614), Halley, Messier
- # 'Island universes': Kant, Laplace (1755-96)

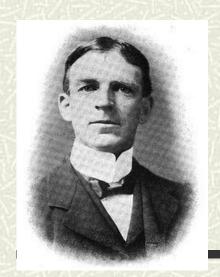
 Collections of stars at immense distance?

 Are stars born in the nebulae?
- ₩ Wilhem Herschel36-inch reflecting telescopeCatalogue of a thousand (1786)
- # Earl of Rosse
- # 72-inch reflecting telescope (1845)
- **★** Some nebulae have spiral structure, stars

Problem of resolution, distance



The spectra of the nebulae


- ■ Photography and spectroscopy (19th cent)

 Emission and absorption lines of celestial objects
- **★** Composition of the stars and planetary nebulae William Huggins
- Radial motion of the starsDoppler effectWilliam Campbell
- Spectroscopy of spiral nebulae?
 Information on evolution of solar system
- **♯** Difficult to resolve

Sir William Huggins (1824 - 1910)


William Campbell (1862 – 1938)

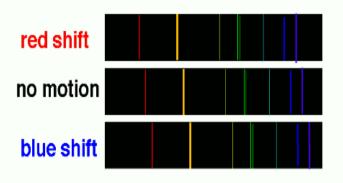
The Lowell observatory

- **♯** Founded by Percival Lowell (1894) *Eccentric astronomer*
- **■** 24-inch refracting telescope Flagstaff, Arizona
- ControversialCanals on Mars
- # Employed VM Slipher (1901)

 Brashear spectrograph
- **#** Spectroscopy of planetary atmospheres

Percival Lowell (1855 – 1916)

Spectra of the spiral nebulae


- Analyse light of the spiral nebulae? (1909) Evolving solar system? Lowell
- Slipher reluctant

 Larger telescopes failed
- Experiments with spectrograph camera Good results with fast camera lens
- Clear spectrum for Andromeda nebula (1912)
 Significantly blue-shifted
 Approaching at 300 km/s
- Many spiral nebulae red-shifted (1917)

Vesto Slipher

$$\Delta \lambda / \lambda = v/c$$

Redshifts of the spiral nebulae

• Spectra of 25 spirals (1917)

Large outward velocities
Some receding at 1000 km/s

- Much faster than stars

 Gravitationally bound by MW?
- Island universe debate

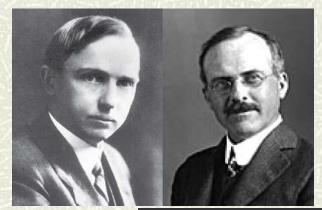
"Island universe hypothesis gains favour"

RADIAL VELOCITIES OF TWENTY-FIVE SPIRAL NEBULÆ.

Nebula,	Vel.	Nebula.	Vel.
N.G.C. 221	- 300 km.	N.G.C. 4526	+ 580 km.
224	- 300	4565	+1100
598	- 260	4594	+1100
1023	+ 300	4649	+1090
1068	+1100	4736	+ 290
2683	+ 400	4826	+ 150
3031	- 30	5005	+ 900
3115	+ 600	5055	+ 450
3379	+ 780	5194	+ 270
3521	+ 730	5236	+ 500
3623	+ 800	5866	+ 650
3627	+ 650	7331	+ 500
4258	+ 500		

The great debate revisited (1920)

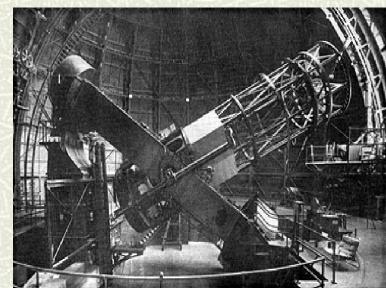
Distinct galaxies


- # Stellar structure of spiral nebulae
- **■** Redshifts not gravitationally bound?
- **■** Many faint novae great distance?

OR

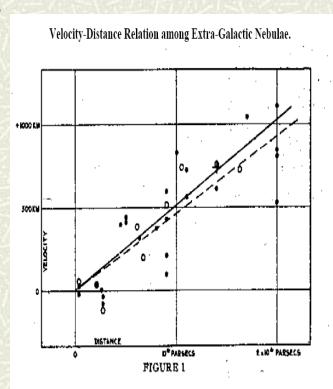
- **■** Big galaxy model (300,000 Lyr)
- **♯** Rotation data (Van Maanen)

Harlow Shapley vs Heber Curtis



A clear resolution (1925)

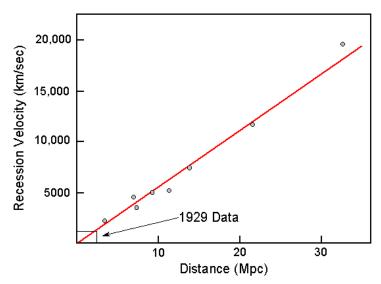
- **♯** Hooker telescope (Mt Wilson, 1917)
- **■** 100-inch reflector
- # Edwin Hubble (1921)
- **#** Ambitious astronomer
- # Resolved Cepheid stars in nebulae
- **■** Leavitt's period-luminosity relation
- **♯** Spirals beyond Milky Way! (1925)


Edwin Hubble (1889-1953)

A velocity/distance relation

- **■** What do the redshifts of the galaxies mean?
- \blacksquare Is there a relation between \mathbf{v} and \mathbf{r} ?
- # Combine redshifts with 24 distances
- **♯** Approx linear relation (Hubble, 1929)

Slipher data not acknowledged Becomes known as Hubble's law



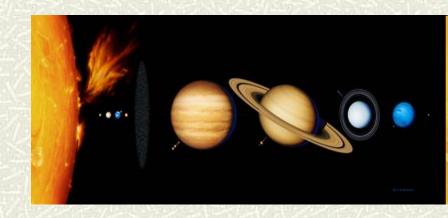
m = 585 km/s/Mpc

Hubble-Humason graph (1931)

- Distance measurements for 40 nebulae/galaxies
- **■** Corresponding redshifts by Humason
- # Reduced scatter linear
- # Justification
- **Explanation**?

Hubble & Humason (1931)

Hubble did not discover the expanding universe

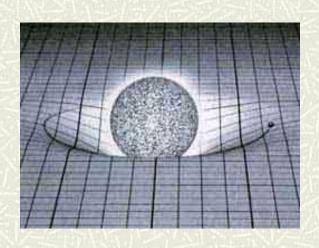

II The expanding universe

- What do the redshifts represent?
- Recession velocities for distant galaxies?
- If so, why?
- Newtonian gravity pulls in
- What is pushing out?

Space, time fixed

Isaac Newton

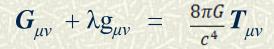
General relativity (1915)


- Space+time = space-time
- Space-time dynamic
- Distorted by motion, mass
- Causes other mass to move

Gravity = curvature of space-time

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

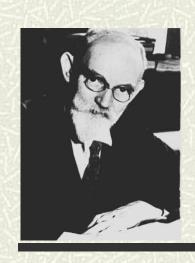
• Eddington experiment (1919)



Two models of the cosmos

Einstein (1917)

- **♯** Assume uniform density of matter
- # Equations predict dynamic universe
- No evidence for such a universe
- **♯** Add cosmic constant 'static'
- # Closed curvature, finite radius



De Sitter (1918)

- **#** Assume empty universe
- **♯** Apparently static (co-ordinate system)
- **Redshifts** due to time dilation/matter

Explanation for redshifts of the galaxies?

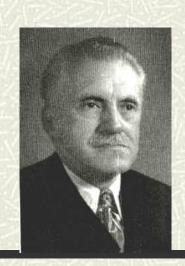
De Sitter effect and astronomy

Silberstein (1923)

 $\Delta \lambda / \lambda = +/- r/R$ (global clusters)

♯ Carl von Wirtz (1924)

Redshifts for nebulae different to clusters Time dilation effect?



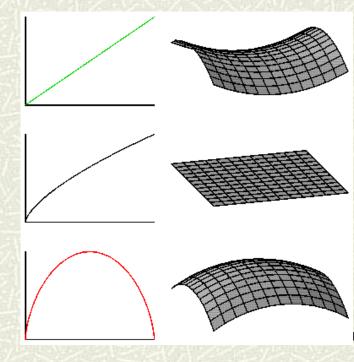
Lundmark (1924)

'The determination of the curvature of spacetime in de Sitter's world' Stars and globular clusters

Stromberg (1925)

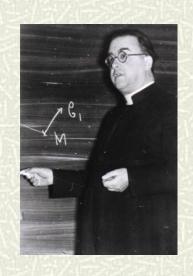
Vel/dist relation for globular clusters?

Friedman universes


- # General solutions (1922, 24)
- **■** Time-varying radius
- **♯** Expanding or contracting
- # Positive or negative curvature
- \blacksquare Depends on matter $\Omega = d/d_c$

<u>Hypothetical</u> models (ZfPh)

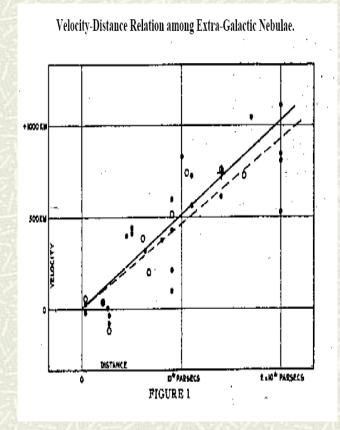
All possible universes (to be decided by astronomy)
Disliked by Einstein ('suspicious')


Alexander Friedman 1888 - 1925

Lemaitre's expanding universe

- **■** De Sitter model is not static (1925)
- \blacksquare New solution combining best of E and deS
- **★** Matter-filled universe of increasing radius (1927)
- **\(\)** Connection with astronomy
- **#** Redshifts = expansion of space-time metric?
- **\blacksquare** Rate of expansion from average measurements of distance and redshift H = 585 km/s/Mpc

Obscure journal Rejected by Einstein



Fr Georges Lemaitre

Weyl (1925)
Lanczos (1923)
Robertson (1928)

III The expanding universe (1931)

- **#** Hubble-Slipher graph (1929)
- # Einstein, de Sitter models don't fit
- # Lemaitre reminds Eddington of his paper
- **■** Paper translated (MNAS, 1931)
- **♯** Satisfactory explanation
- **♯** Space is expanding (relativists)
- **♯** Astronomers sceptical (Hubble)

Expansion of space

Who discovered the expanding universe?

Friedman Evolving universe

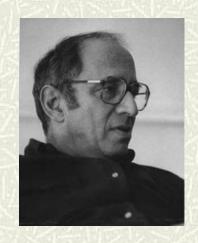
■ Lemaitre Expanding U and experiment

Hubble/Slipher Empirical evidence

All of them!

FLRW metric, but nothing for Slipher

'Hubble graph' should be Hubble-Slipher graph
'Hubble expansion 'should be Hubble-Lemaitre expansion

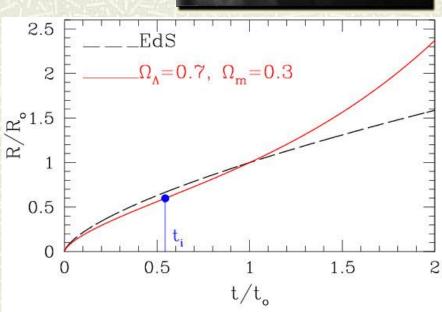

P.S. On paradigm shifts

Slow emergence of theory and evidence

- **■** Experiment: Rosse, Huggins, Leavitt, Shapely, Slipher, Hubble

Slow acceptance by community

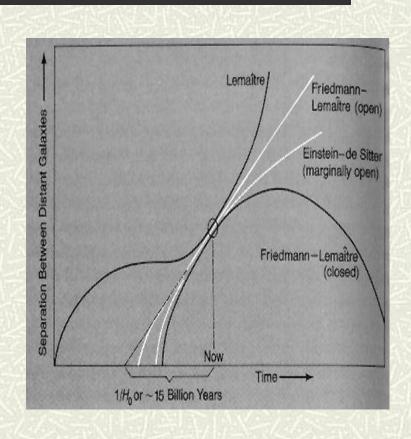
- **♯** Many astronomers doubt relativistic universe
- **♯** No upsurge of interest in cosmology until 1965


Thomas Kuhn

Slow dawning, not incommensurate paradigm shift

Einstein-deSitter universe (1932)

- # Einstein rejects static universe (1931)
- \blacksquare Removes cosmic constant (Λ =0)
- **#** U of Flat geometry
- # Critical mass density
- **♯** Standard model (age problem)



Lemaitre's universe (1934)

- **♯** Positive cosmic constant
- # Accelerated expansion
- **■** Expansion from radioactive decay
- **■** Stagnation period

No age problem $\Lambda = Energy of vacuum$ $\rho = -\rho_0 c^2, \ \rho_0 = \lambda c^2 / 8\pi G$

Cyclic universe?